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Machine learning (ML) is transforming how people work and create, and the pace of change is accelerating.
In two decades, capabilities have progressed from recognizing handwritten digits to building simple conversa-
tional chatbots; in just the past five years, tool-using agents that browse the web and execute code can build
software from high-level instructions. Because returns to intelligence compound (i.e., new capabilities enable
faster subsequent gains), the societal impact will broaden even more rapidly. My goal is to democratize
these benefits by making AI systems more efficient: reducing memory, computation, latency, and energy so
state-of-the-art models can be trained and deployed under real-world constraints.

My research centers on compression and efficiency across ML algorithms and systems. As ML expands
into new domains, heterogeneous architectures, pipelines, and data types introduce distinct constraints; I
formalize these design questions as discrete or continuous optimization problems, identify the underlying
problem class, and develop tractable, principled solutions. I pair this with engineering efforts to turn ideas
into practical artifacts and measurable gains. The remainder of this statement summarizes my contributions
across diverse ML settings, distills key lessons, and outlines future directions aimed at addressing efficiency
bottlenecks in emerging fields where machine learning systems will play an increasingly important role.

Research Progress

Figure 1: GuidedQuant is a versatile plug-
in framework that improves PTQ methods
under various quantization schemes.

GuidedQuant [1]. The rapid scaling of large language mod-
els (LLMs) has unlocked powerful capabilities but also intro-
duced severe challenges in memory consumption and inference
latency. Post-training quantization (PTQ) offers a practical
path to compression without costly retraining, yet existing
methods suffer from a key limitation: some neglect the vary-
ing importance of hidden features to the end-task loss, while
others capture loss sensitivity but ignore dependencies between
weights. In GuidedQuant, we addressed this gap with a uni-
fied PTQ framework that incorporates gradient signals from
the end-task loss directly into the quantization objective while
preserving cross-weight interactions. This design bridges two
previously disjoint PTQ paradigms and consistently improves
performance across weight-only scalar, weight-only vector, and
weight-and-activation quantization schemes, enabling drop-in
enhancements to state-of-the-art quantizers. Beyond this uni-
fying framework, we further proposed a novel non-uniform
scalar quantizer that provably monotonically reduces the quantization objective and empirically outperforms
prior scalar methods. Overall, GuidedQuant delivers a principled approach to advancing PTQ, enabling a
more accurate compression of LLMs across diverse quantization formats.

LayerMerge [2]. In convolutional neural networks, reducing the number of layers can significantly accel-
erate inference. Depth compression approaches remove redundant activation functions and merge consecu-
tive convolution layers, while layer pruning directly eliminates convolution layers. However, each modality
alone has limitations: depth compression often results in larger kernel sizes that offset latency gains, and
layer pruning can degrade representational capacity. To address this, we introduced LayerMerge, a unified
framework that jointly prunes convolution layers and activation functions, leveraging their complementary
strengths. In LayerMerge, we formulate the joint layer-selection problem as a surrogate optimization and
solve it efficiently with dynamic programming. Experiments show that LayerMerge consistently outperforms
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both standalone depth compression and layer pruning methods, and importantly, the framework applies
seamlessly to both classification models (MobileNet-V2) and generative models (DDPM). In summary, Lay-
erMerge offers a general and effective framework for layer-level compression, achieving superior efficiency
with minimal performance loss.

Figure 2: LayerMerge jointly prunes convolution and non-linear activation layers, accelerating both classifi-
cation and generative models.

Neural Network Depth Compression [3]. Prior to LayerMerge, we introduced a principled depth com-
pression framework for convolutional neural network acceleration that optimizes which non-linear activation
layers to remove and subsequently merges consecutive convolution layers to accelerate inference. Unlike ear-
lier depth compression methods that relied on heuristic design and restricted search spaces, we formulated
the problem as selecting a subset of activation layers to replace with identity functions under a latency
constraint. We then proposed a surrogate optimization problem with linear objectives and constraints and
developed a dynamic programming algorithm that solves it exactly. This was the first work to frame depth
compression in terms of linear objectives and constraints and to provide an exact dynamic programming
solution. This foundation directly motivated LayerMerge, where we extended the framework to jointly opti-
mize both convolution layers and activation functions, leveraging their complementary strengths for broader
applicability across classification and generative models.

Figure 3: We formulate a subset selection problem that optimizes which non-linear activations layer to
remove, which we solve via dynamic programming algorithm.

KVzip [4]. Transformer LLMs cache past context as key–value (KV) pairs, making long-context inference
memory- and latency-bound. In KVzip, we developed a query-agnostic KV eviction framework that scores
each KV pair by how well the underlying model can reconstruct the original context from it and evicts low-
importance pairs. This reconstruction-based criterion enables effective cache reuse across diverse prompts and
multi-query settings, yielding 3-4× KV-size reduction and roughly 2× faster FlashAttention decoding with
negligible accuracy loss, up to 170K-token contexts. On the engineering side, I contributed by implementing
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the method across different LLM architectures: the Gemma3 architecture, which employs sliding-window
attention, and the LLaMA3 architecture under a quantization setting, where weights and activations are
quantized to 8-bits and KV caches to 4-bits. KVzip unlocks new applications by producing reusable and
accurately compressed KV caches suitable for multiple future queries, which is particularly valuable in real-
world scenarios such as enterprise document retrieval–augmented systems or personalized user contexts.

Figure 4: KVzip consistently outperforms query-aware baselines under multi-query workloads, including on
LLMs using sliding-window attention (Gemma3-12B) or quantization (LLaMA3-8B-W8A8KV4).

Figure 5: Leveraging our condensed data
(IDC) as exemplars in continual learning
yields superior performance.

Dataset Condensation [5]. Modern ML systems rely on mas-
sive datasets, making training and tuning prohibitively costly
in compute and storage. Prior condensation methods synthesize
small training sets but are fundamentally limited by optimization
procedures that ignore inherent data regularities. We proposed a
condensation framework that efficiently parameterizes synthetic
examples by exploiting such regularities (e.g., nearby pixels often
share similar colors), enabling the generation of multiple diverse
samples under a fixed storage budget. On the engineering side, I
extended the framework to continual learning by using condensed
sets as exemplar memories for past classes; under the same mem-
ory budget, this achieved the highest accuracy compared to alter-
native condensation and coreset approaches. Overall, the method
advances dataset condensation by leveraging data regularities and
further demonstrates promise in continual learning scenarios.

Ongoing and Future Directions

Looking ahead, I aim to enhance the efficiency of machine learning systems, particularly in domains with
the greatest societal and scientific impact. I envision ML technologies that interact with external environ-
ments, leverage external tools, discover new science, and integrate into everyday life as ambient systems that
transform how we live and work. My goal is to make the benefits of emerging architectures and applica-
tions broadly accessible through principled compression research, coupled with proper engineering effort, for
real-world impact. Below, I outline ongoing and future research directions that reflect this vision; the list is
illustrative and not limited to those enumerated.

• Efficient QAT for LLMs: Develop efficient QAT pipelines that scale to trillion-parameter MoE models
and remain practical for practitioners.

• Compressing RL fine-tuned LLMs: Create policy-aligned quantization and pruning that preserve RL
objectives and reward/preference fidelity for agentic and reasoning tasks.
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• Compressing Diffusion LLMs: Design decoding order-aware compression objectives that mirror inference-
time decoding schedules to retain quality at low cost for diffusion LLMs.

• Compressing Vision-Language-Action (VLA) models: Build an evaluation suite that reflects end-to-
end simulation throughput and develop task-adaptive compression to meet task-specific throughput
targets.
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